Processors based on ARM’s 64-bit ARMv8 architecture will start to appear next year, and just like the x86 AMD Opteron™ processors a decade ago, AMD’s ARM 64-bit processors will offer enterprises a viable option for efficiently handling vast amounts of data.
The AMD Opteron processor came at a time when x86 processors were seen by many as silicon that could only power personal computers, with specialized processors running on architectures such as SPARC™ and Power™ being the ones that were handling server workloads. Back in 2003, the AMD Opteron processor did more than just offer another option, it made the x86 architecture a viable contender in the server market - showing that processors based on x86 architectures could compete effectively against established architectures. Thanks in no small part to the AMD Opteron processor, today the majority of servers shipped run x86 processors.
In 2014, AMD will once again disrupt the datacenter as x86 processors will be joined by those that make use of ARM’s 64-bit architecture. Codenamed “Seattle,” AMD’s first ARM-based Opteron processor will use the ARMv8 architecture, offering low-power processing in the fast growing dense server space.
To appreciate what the first ARM-based AMD Opteron processor is designed to deliver to those wanting to deploy racks of servers, it is important to realize that the ARMv8 architecture offers a clean slate on which to build both hardware and software.
ARM’s ARMv8 architecture is much more than a doubling of word-length from previous generation ARMv7 architecture: it has been designed from the ground-up to provide higher performance while retaining the trademark power efficiencies that everyone has come to expect from the ARM architecture. AMD’s “Seattle” processors will have either four or eight cores, packing server-grade features such as support for up to 128 GB of ECC memory, and integrated 10Gb/sec of Ethernet connectivity with AMD’s revolutionary Freedom™ fabric, designed to cater for dense compute systems.