Hard drives need energy-assisted magnetic recording to keep gaining areal density and capacity.
HDD Areal Density Growth Slows as Capacity Increases : Read more
HDD Areal Density Growth Slows as Capacity Increases : Read more
3.5" HDDs are the go-to size because it is the optimal choice between density and reliability. If you make platters larger, they also need to be thicker to maintain the necessary stiffness all the way to the edge. Since the moment of inertia scales with the fourth power of radius, making the platters 50% larger by diameter would require making them ~4X as strong unless you lower the RPMs. The performance and density would take a substantial hit. Everything being 50% bigger and 70-150% heavier will put that much extra strain on motors, drivers, bearings, etc. too.Have to wonder if the 5.25" form factor could make a comeback. Given advances in computer machining tolerances as well as higher density, platter count, multiple read actuators, and RAID allowing for lower RPM while retaining throughput, I think it could work in the enterprise market.
Have to wonder if the 5.25" form factor could make a comeback. Given advances in computer machining tolerances as well as higher density, platter count, multiple read actuators, and RAID allowing for lower RPM while retaining throughput, I think it could work in the enterprise market.