[citation][nom]enewmen[/nom]I still don't understand how RAID with parity can be less reliable than 1 drive with no parity. I never in my life had more than 1 drive fail at the same time (with big & small RAID5 arrays).i.e. If one 12TB drive fails in RAID5, it's POSSIBLE (or likely) a reconstruction can fail. If one 12TB drive fails with no RAID, all data is 100% gone for sure.Where can I find more info on this?Thanks![/citation]
I couldn't give you info that is 100% technically sound on this topic (or a terribly elegant one), at least compared to some hardware junkies...but I'll take a stab at it.
Consider, that with one drive you are dealing with the probability of one drive failing. That is, the probability that one drive is defective, or has an off 'moment' inside, or is just too old, or whatever. This is the chance that the one drive will 'become another statistic', as I'll call it.
The simple explanation here provides that the more drives you have, the better chance you have for a single drive failure. So instead of having 1 chance for one drive to fail...you have 5 chances for one drive to fail. Then, the more drives you add, even better the probability that one of them will 'become another statistic.'
The problem enters when you consider that (after a drive failure) rebuilding an array of a certain size takes a quantifiable amount of time and number of disk operations. I have not personally done the math, but the idea is that each drive may (for argument's sake) have a 1 in 10,000 operations error rate, and rebuilding an array of the specified size or disk count may require 10,001 disk operations from EACH disk; and this is assuming that each drive operates within its specified tolerances. Another drive really could fail altogether.
The basic point is that the numbers can catch up to you