I have destroyed many PSU this way, which claimed ATX compatibility. Also having UVP is one thing, having it configured correctly is another. Finally, UVP isn't required according to ATX spec. However in any case voltages shouldn't go below the lowest limit set by the load regulation table.
According to the WT7527 spec sheet the UVP min. level at +12V is 10.3V, the typ. is 10.65 and only the max is 11.0. Even if we go with the max (11V) we are still far away from the 11.4V that the ATX spec (Revision 1.31) sets as minimum limit for this rail even under peak load (it used to allow 10% deviation in older revisions). According to my experience so far if you push hard a PSU and drop the +12V rail at 11.0, then it is a matter of minutes (or even seconds) till it blows sky high. Especially under high ambient temperatures.
OCP on the minor rails is typical and most units have it. OCP at +12V is something that not all PSUs have, or they just have it set very high in order to actually disable it. Also I don't agree that OCP at +12V is an effective way to protect the minor rails (in the unusual case that they don't have OCP), because if you have low load at +12V you can practically push way too high the minor rails and still keep the +12V rail in spec. The +12V FETs might be handle the load but this won't be necessarily the case for the minor rails' FETs.
The ATX spec (sec. 3.5) only requires, when it comes to protection features: OVP, SCP, NL, OCP and OTP. So if you go strictly with ATX you still don't have OPP and UVP. Furthermore, OPP and UVP need to configured properly to provide effective protection.
For you the lack of OPP might not be a big thing, however for me and my experience (>500 PSU evaluations so far) it is. Especially since last week I blew sky high a very expensive PSU because its OPP wasn't configured properly (was set too high). Actually I expect every PSU to be equipped with the necessary protection features. Also even if we take your worst scenario in mind, the destruction of a FET is still a major disaster for the average user. Moreover, when a component like a FET (or a bridge rectifier) dies, it will most likely take some more along with it.
In any case, I don't have anything else to comment on this matter and to be frank I don't even have the time to deal with it any more. But I do want all of my readers to be properly informed (and not misinformed).