With the pro cards at last not hindered by slower-clocked workstation
CPUs, we can finally see these cards show their true potential. You're
getting results that more closely match
my own this time, confirming what
I suspected, that workstation CPUs' low clock rates hold back the
Viewperf 11 tests significantly in some cases. Many of them seem very
sensitive to absolute clock rate, especially ProE.
And interesting to compare btw given that your test system has a 4.5GHz
3770K. Mine has a 5GHz 2700K; for the Lightwave test with a Quadro 4000,
I get 93.21, some 10% faster than with the 3770K. I'm intrigued that you
get such a high score for the Maya test though, mine is much lower
(54.13); driver differences perhaps? By contrast, my tcvis/snx scores are
almost identical.
I mentioned ProE (I get 16.63 for a Quadro 4K + 2700K/5.0); Igor, can you
confirm whether or not the ProE test is single-threaded? Someone told me
ProE is single-threaded, but I've not checked yet.
FloKid, I don't know how you could miss the numbers but in some cases
the gamer cards are an order of magnitude slower than the pro cards,
especially in the Viewperf tests. As rmpumper says, pro cards often give
massively better viewport performance.
bambiboom, although you're right about image quality, you're wrong about
performance with workstation CPUs - many pro apps benefit much more from
absolute higher speed of a single CPU with less threads, rather than just
lots of threads. I have a dual-X5570 Dell T7500 and it's often smoked for
pro apps by my 5GHz 2700K (even more so by my 3930K); compare to my
Viewperf results as linked above. Mind you, as I'm sure you'd be the
first to point out, this doesn't take into account real-world situations
where one might also be dealing with large data sets, lots of I/O and
other preprocessing in a pro app such as propprietory database traversal,
etc., in which case yes indeed a lots-of-threads workstation matters, as
might ECC RAM and other issues. It varies. You're definitely right though
about image precision, RAM reliability, etc.
falchard, the problem with Tesla cards is cost. I know someone who'd
love to put three Teslas in his system, but he can't afford to. Thus, in
the meantime, three GTX 580s is a good compromise (his primary card
is a Quadro 4K).
catmull-rom, if I can quote, you said, "... if you can live with the
limitations.", but therein lies the issue: the limitation is with
problems such as rendering artifacts which are normally deemed
unacceptable (potentially disastrous for some types of task such as
medical imaging, financial transaction processing and GIS). Also, to
understand Viewperf and other pro apps, you need to understand viewport
performance, and the big differences in driver support that exist between
gamer and pro cards. Pro & gamer cards are optimised for different types
of 3D primitive/function, eg. pro apps often use a lot of antialiased
lines (games don't), while gamer cards use a lot of 2-sided textures (pro
apps don't). This is reflected in the drivers, which is why (for example)
a line test in Maya can be 10X faster on a pro card, while a game test
like 3DMark06 can be 10X faster on a gamer card.
Also, as Teddy Gage pointed out on the
creativecow site recently, pro
cards have more reliable drivers (very important indeed), greater viewport
accuracy, better binned chips (better fault testing), run cooler, are smaller,
use less power and come with better customer support.
For comparing the two types of card, speed is just one of a great many
factors to consider, and in many cases is not the most important factor.
Saving several hundred $ by buying a gamer card is pointless if the app
crashes because of a memory error during a 12-hour render. The time lost
could be catastrophic it means one misses a submission deadline; that's
just not viable for the pro users I know.
Ian.