[citation][nom]christophermarti[/nom]I would say that your estimates about P/E cycles are incorrect. You also do not mention (on purpose) two modes SSD's (99%) operate in: performance mode (not filled to 90%) and storage mode (filled 90% and more). You also lack to mention that in "middle of" P/E cycle exhaustion SSD's will slow down their speed due to preserve P/E cycles and "survive" to meet warranty agreements.
http://www.xtremesystems.org/forum [...] nm/page211From test exposed in this forum You can draw conclusion how good MLC used in X-25v 40GB SSD were (more than 35000 P/E). Also that longest "standing" SSD is Samsung 830 256GB, which also do not (as an exception) slow down considerably when it passes 1PB Host Writes mark.Although I strongly do agree that seing writes above 10GB per day is rather rare. I'm myself using 80GB X25-M for 4 years and only 4,09 TB and i is possible that it will hold up to 1400 - 3400 TB of writes! That's amazing. What's more, I have it in Dell E6400 on Vista (no Trim, just Intel toolbox).[/citation]
Our calculations and endurance protocol are not effected by any speed slow down, and in every test, we've confirmed our methodology applies a WA~1%. Thus, are estimates are correct and apply to the NAND itself.
Second, the speed of a drive has no inherent bearing on endurance. It only affects how fast you can get there. Second, you're referring to a throttling effect, which is a different topic completely. Our analysis was specific to the NAND itself.
As further verification, another one of my peers (at another site) independently came to results for the SSD 335 similar to ours.