Not a very informative article at all. There are plenty of things to mention just to give a few examples: One could discuss the different cat and how that spec affects the cabling and other hardware in detail. Shielded vs unshielded gear. The different features that you find among different NICs, in more technical detail as to what differentiates a server grade NIC from a desktop grade. How different brands of NICs handles more complex issues such as QoS or TSO and what controllers are better than others in different workloads. What differentiates their signal strenghts how good impedance matching one can get from different ports of different brands of hardware and how well this is resolved. How are packet collisions and losses handled? What latencies can we get? How well do these different NICs really offload the CPU? There are many different features out there such as iSCSI, PXE VDEV, SerDes, IPMI, Cable Diagnostics, Crossover detection, pair swap/polarity/skew correction, NDIS5 Checksum Offload (IP, TCP, UDP) and largesend offload support, IEEE 802.1Q VLAN tagging, Transmit/Receive FIFO (8K/64K) support , ... There are concepts such as HMAC+, RMCP, RAKP, SOL Payload, Kg, SIK, BMC, MSI Writes, SKP Ordered Set resets and Training Sequences (TS), RDTR and RADV timer mechanisms, ICR reads, Bit Banging, ...
There are many different features and concepts, and differences among how different manufacturers handle them. Things could be measured and analysed with spectrum analyzers, and dedicated benchmark hardware, both on the performance and CPU utilization. But none of it is discussed in this article that is quite sub-par unfortunately.